News

Batteries Must be Eliminated from EVs and IoT Devices

August 03, 2017 by Paul Shepard

A new report titled, “Battery Elimination in Electronics and Electrical Engineering 2018-2028; Technology and prospects for 'perpetual' devices and equipment,” explains why we need to do this and why even partial success promises major benefits to society and new business opportunities.

For example, Internet of Things nodes cannot be deployed in hundreds of billions if their batteries have to be replaced. At least 80% of the potential for IoT will be denied us since they need to be working decades from now despite being inaccessibly embedded in concrete of bridges and buildings, on billions of trees and so on.

Think of remote communities and the emerging nations having electric vehicles that are virtually maintenance free and passed between generations to give travel almost free of charge. Return to a distant planet to find your robots still at work. The report analyses new breakthroughs promising to make all this possible and more.

It explains how batteries have serious limitations of cost, safety, performance and life. Learn how lithium-ion batteries will dominate the market for at least ten years and probably much longer yet no lithium-ion cell is inherently safe and no lithium-ion battery management system can ensure safety in all circumstances.

Tesla says it will have solar bodywork on all its electric vehicles but, as this trend from "components in a box" to structural electronics and electrics progresses, the batteries are the problem because even solid state ones swell and shrink in use. They would destroy bodywork.

The report uniquely examines the many ways of eliminating batteries, confounding the skeptics with many examples currently operating, from electronics to buses and the power grid. Learn how batteries are needed less and less with the advent of energy harvesting with greatly improved continuity such as Airborne Wind Energy and multi-mode.

It is noted that electronics and electrics need far less energy nowadays, making battery elimination more feasible: think ultra low power ARM chips, LEDs and high voltage, high speed traction motors for example.

The replacement of batteries with other energy storage is covered: some of these components have much longer life, better safety and suitability for use in planned smart materials. However, the much bigger potential is complete elimination of energy storage and that is the main focus.

This report has over 250 pages packed with new infograms, statistics and predictions. The Executive Summary and Conclusions is self-standing and sufficient for those in a hurry. The Introduction introduces the problems and solutions, including technologies to add to energy harvesting to provide the continuity of electricity supply that leads to less or no battery, such as dynamic charging of vehicles through roads.

The work was researched by PhD level analysts traveling worldwide and examination of IDTechEx databases, web research, recent conferences and other sources. The emphasis is on practicality, benchmarking and opportunity rather than theory so the third chapter looks at eliminating energy storage from sensors, building controls, cellphones and robot ships, sharing recent breakthroughs and predictions. Deliberately these examples expose very different challenges and solutions.

Chapter 4 is entirely devoted to the important topic of Internet of Things nodes without batteries - key to mass deployment. It reveals the exciting progress of EnOcean GmbH in this respect. This contrasts with Chapter 5 revealing the very different way in which electric vehicles and mobile e-cooking progress to no battery.

This chapter also encompasses how to replace 700GW of diesel gensets across the world with transportable green sources with little or no battery and how the new Energy Independent Electric Vehicles EIV with quoted "perpetual" speed fit in with all this.

Chapter 6 contemplates the grid without energy storage, currently a hot topic in that industry and finally, from Chapter 7 onwards, it looks very thoroughly at energy harvesting technologies for battery replacement.